在數(shù)字時(shí)代,資訊的傳播和互動(dòng)主要是通過(guò)各種軟件的用戶界面進(jìn)行。用戶滿意度是迭代優(yōu)化軟件界面設(shè)計(jì)的重要參考。
如何更好地測(cè)量用戶滿意度?
越來(lái)越多的用戶體驗(yàn)研究開(kāi)始探索從傳統(tǒng)主觀評(píng)價(jià)到更加全面客觀的評(píng)估方法的轉(zhuǎn)變。
本文介紹來(lái)自南京理工大學(xué)和深圳科技大學(xué)的研究團(tuán)隊(duì)的最新研究成果,了解他們?nèi)绾螌⒚娌孔R(shí)別技術(shù)與PSO-BP神經(jīng)網(wǎng)絡(luò)相結(jié)合,構(gòu)建出一個(gè)綜合的用戶滿意度測(cè)量模型,從而擴(kuò)大用戶界面滿意度評(píng)估方法的范圍,增強(qiáng)測(cè)量的客觀性及傳統(tǒng)評(píng)估技術(shù)的效率(Li et al., 2024)。
如何評(píng)估用戶滿意度?
用戶滿意度的概念最早是由美國(guó)學(xué)者R.N. Cardozo于1965年提出的,指客戶在獲得商品和服務(wù)時(shí)達(dá)到或超過(guò)預(yù)期的心理狀態(tài)。增強(qiáng)的用戶滿意度與改善的用戶體驗(yàn)相關(guān)。在數(shù)字時(shí)代,資訊的傳播和互動(dòng)主要是通過(guò)各種軟件的用戶界面進(jìn)行,因此,用戶從界面中獲得的滿意度在信息交互過(guò)程中起著至關(guān)重要的作用,是優(yōu)化和完善軟件及相關(guān)產(chǎn)品的關(guān)鍵因素。
用戶界面滿意度的評(píng)估方法多種多樣,多以主觀評(píng)價(jià)為主,包括德?tīng)柗品ā?wèn)卷調(diào)查、訪談?wù){(diào)查和有聲思維法等。這些收集用戶主觀和經(jīng)驗(yàn)數(shù)據(jù)的方法是用戶滿意度評(píng)估的基礎(chǔ)。然而,依賴主觀評(píng)價(jià)可能會(huì)產(chǎn)生準(zhǔn)確性與客觀性不足的問(wèn)題。
一些研究開(kāi)始通過(guò)結(jié)合客觀的行為分析、生理測(cè)量以及計(jì)算機(jī)算法的方法來(lái)輔助主觀評(píng)價(jià)。利用可用性測(cè)試的基礎(chǔ),客觀行為分析已經(jīng)成為評(píng)估軟件界面滿意度的流行方法。腦電測(cè)量、眼動(dòng)追蹤和面部識(shí)別技術(shù)也廣泛用于評(píng)估界面滿意度。而隨著計(jì)算機(jī)算法的快速發(fā)展,基于PSO-BP神經(jīng)網(wǎng)絡(luò)的用戶滿意度的預(yù)測(cè)模型開(kāi)始逐漸被應(yīng)用于用戶界面研究。神經(jīng)網(wǎng)絡(luò)算法能夠很好地處理用戶滿意度中涉及的多種因素(如用戶行為、情感反應(yīng)和操作效率)之間復(fù)雜的非線性關(guān)系,獲得準(zhǔn)確和穩(wěn)定的預(yù)測(cè)模型。
利用面部識(shí)別技術(shù)評(píng)估用戶滿意度
過(guò)往研究中,用戶滿意度的實(shí)驗(yàn)研究中獲取的生理數(shù)據(jù)主要以腦電和眼動(dòng)為主,這往往需要專業(yè)的人員來(lái)設(shè)計(jì)并實(shí)施實(shí)驗(yàn)。例如對(duì)于腦電采集來(lái)說(shuō),實(shí)驗(yàn)過(guò)程復(fù)雜耗時(shí),對(duì)被試選擇標(biāo)準(zhǔn)也很嚴(yán)格,這就降低了研究效率;對(duì)于眼動(dòng)追蹤來(lái)說(shuō),其數(shù)據(jù)主要反映視覺(jué)特征和審美偏好,無(wú)法直接反應(yīng)情緒與感受,所以相關(guān)研究通常以眼動(dòng)數(shù)據(jù)來(lái)證實(shí)軟件界面的可用性,后探究可用性和滿意度之間關(guān)系,從而得出界面滿意度評(píng)估,而這也導(dǎo)致研究重點(diǎn)偏離了界面滿意度評(píng)估。此外,采集這些數(shù)據(jù)時(shí)一般需要使用專業(yè)的、昂貴的設(shè)備如腦電設(shè)備和眼動(dòng)儀,這大大增加了實(shí)驗(yàn)成本。
相比之下,面部表情識(shí)別技術(shù)作為一種非接觸式的測(cè)量方法用于用戶滿意度研究,能更加簡(jiǎn)潔、快捷地獲得同樣客觀的數(shù)據(jù)。面部表情直接反映了用戶的情緒狀態(tài),且與滿意度密切相關(guān),這使得面部表情識(shí)別和分析技術(shù)在評(píng)估滿意度方面具有實(shí)用性和價(jià)值。此外,收集面部表情數(shù)據(jù)更直接,成本更低,通常只需要一個(gè)標(biāo)準(zhǔn)的相機(jī)來(lái)捕捉面部表情,即可完成數(shù)據(jù)采集。這將大大降低實(shí)驗(yàn)成本,提高實(shí)驗(yàn)效率。
總的來(lái)說(shuō),目前評(píng)價(jià)用戶滿意度的方法主要依靠主觀評(píng)價(jià),偶爾有客觀指標(biāo)支持,但這些方法缺乏效率和準(zhǔn)確性。因此,本研究團(tuán)隊(duì)旨在提出并驗(yàn)證一種測(cè)量用戶滿意度的新方法,即利用面部識(shí)別技術(shù)與PSO-BP神經(jīng)網(wǎng)絡(luò)模型來(lái)預(yù)測(cè)用戶滿意度。
構(gòu)建預(yù)測(cè)模型并驗(yàn)證
研究采用實(shí)驗(yàn)觀察的方法,選擇國(guó)內(nèi)教育領(lǐng)域流行的兩款筆記軟件:Notability和Goodnotes,觀察被試操作時(shí)的行為并評(píng)估其滿意度。參與實(shí)驗(yàn)被試共42名,隨機(jī)分為A、B兩組,分別進(jìn)行兩組實(shí)驗(yàn)(圖1):
圖1
(1) A組被試使用Notability根據(jù)提示完成四項(xiàng)任務(wù)(圖2):用橙色的圓點(diǎn)筆畫(huà)一個(gè)心、插入一張圖片并等比調(diào)整大小放入框中、使用橡皮擦工具擦除紫線、將手寫(xiě)筆記改為黑色并調(diào)整大小放入框中。過(guò)程中測(cè)量其面部表情強(qiáng)度、任務(wù)完成時(shí)間、任務(wù)成功率和操作流程。任務(wù)完成后,被試進(jìn)行從1-10的主觀滿意度評(píng)分。利用客觀數(shù)據(jù)作為輸入,主觀評(píng)分作為輸出,構(gòu)建基于PSO-BP神經(jīng)網(wǎng)絡(luò)的用戶滿意度預(yù)測(cè)模型;
(2) B組被試使用Goodnotes完成與A組同樣的四項(xiàng)任務(wù)并采集數(shù)據(jù)。使用相關(guān)數(shù)據(jù)驗(yàn)證模型的有效性和準(zhǔn)確性。
圖2
本研究使用諾達(dá)思的面部表情分析系統(tǒng)(FaceReader)進(jìn)行面部表情追蹤與分析。FaceReader的面部表情識(shí)別平均準(zhǔn)確率為 99%,在消費(fèi)者行為和心理學(xué)研究等領(lǐng)域被廣泛使用。研究中使用攝像頭捕捉用戶在軟件交互過(guò)程中的面部反應(yīng),后在FaceReader中進(jìn)行分析(圖3)。軟件采用保羅·艾克曼的面部動(dòng)作編碼系統(tǒng)(FACS),將表情分為六種基本類型:喜悅、悲傷、憤怒、驚訝、恐懼和厭惡以及中性狀態(tài),并根據(jù)即時(shí)觀捕捉到的面部特征為每種情緒分配相應(yīng)的強(qiáng)度值。
圖3
在模型構(gòu)建階段,將用戶的主觀滿意度得分與預(yù)測(cè)結(jié)果進(jìn)行比較,對(duì)模型進(jìn)行調(diào)整。隨后,在模型驗(yàn)證階段,將這些分?jǐn)?shù)與模型的預(yù)測(cè)結(jié)果進(jìn)行比較,以評(píng)估模型的準(zhǔn)確性。
評(píng)估用戶界面滿意度的新方向
結(jié)果顯示(圖4),預(yù)測(cè)Goodnotes中四個(gè)功能任務(wù)的滿意度時(shí),平均預(yù)測(cè)誤差為13.74%,預(yù)測(cè)準(zhǔn)確率高達(dá)86.26%。這表明利用面部表情識(shí)別技術(shù)與PSO-BP神經(jīng)網(wǎng)絡(luò)構(gòu)建的用戶滿意度預(yù)測(cè)模型具有較高的準(zhǔn)確性和可靠性,是預(yù)測(cè)用戶滿意度的有效方法。
圖4 四項(xiàng)任務(wù)中預(yù)測(cè)模型與實(shí)際用戶滿意度的比較
長(zhǎng)期以來(lái),界面滿意度的評(píng)估和測(cè)量一直是軟件優(yōu)化和升級(jí)的關(guān)鍵指標(biāo)。目前,滿意度評(píng)估主要依靠主觀評(píng)價(jià),有時(shí)輔以客觀方法。然而,主觀方法往往缺乏客觀性,而客觀方法則面臨效率問(wèn)題。本研究提出并驗(yàn)證了一種評(píng)估用戶界面滿意度的預(yù)測(cè)模型,這有助于拓展用戶界面滿意度評(píng)估方法的范圍,對(duì)軟件界面可用性評(píng)估和優(yōu)化設(shè)計(jì)具有實(shí)際意義。
將面部識(shí)別技術(shù)與PSO-BP神經(jīng)網(wǎng)絡(luò)相結(jié)合的測(cè)量方法既客觀又精確,且相較于其他客觀測(cè)量方法,具有更高的效率,可以很容易地應(yīng)用于一般的軟件滿意度評(píng)估,為軟件接口設(shè)計(jì)、優(yōu)化和升級(jí)提供有價(jià)值的數(shù)據(jù)和指導(dǎo),繼續(xù)推動(dòng)該領(lǐng)域的可用性研究。未來(lái)研究可以考慮將更多的軟件類型作為實(shí)驗(yàn)材料,以及增加樣本的多樣性,以進(jìn)行更廣泛的用戶滿意度分析,進(jìn)一步增強(qiáng)模型的預(yù)測(cè)能力,最終建立適用性更廣、精度更高的滿意度預(yù)測(cè)模型。
參考文獻(xiàn)
Li, Q., Zheng, B., Wu, T., Li, Y., & Hao, P. (2024). A Method for Evaluating User Interface Satisfaction Using Facial Recognition Technology and a PSO-BP Neural Network. Applied Sciences, 14(13), 5649.
關(guān)注諾達(dá)思公眾號(hào),聯(lián)系我們獲取更多產(chǎn)品信息及學(xué)術(shù)文章!